WWW.DISS.SELUK.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА
(Авторефераты, диссертации, методички, учебные программы, монографии)

 


Разработка тренажерного оборудования для повышения безопасности технологических процессов на нефтегазовых объектах

На правах рукописи

Гиниятов Ильнур Гумарович

РАЗРАБОТКА ТРЕНАЖЕРНОГО ОБОРУДОВАНИЯ ДЛЯ ПОВЫШЕНИЯ БЕЗОПАСНОСТИ ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ НА НЕФТЕГАЗОВЫХ ОБЪЕКТАХ

Специальность 05.26.03 – Пожарная и промышленная безопасность

(нефтегазовая отрасль)

Автореферат

диссертации на соискание ученой степени кандидата технических наук

Уфа - 2009

Работа выполнена в Уфимском государственном нефтяном техническом университете на кафедре «Пожарная и промышленная безопасность».

Научный руководитель доктор технических наук, профессор

Хафизов Фаниль Шамилевич.

Официальные оппоненты: доктор технических наук, профессор

Байков Игорь Равильевич;

кандидат технических наук, доцент

Насыров Рашит Вильевич

Ведущая организация ООО «РН-УфаНИПИнефть».

Защита состоится «25» сентября 2009 года в 14-00 на заседании совета по защите докторских и кандидатских диссертаций Д 212.289.05 при Уфимском государственном нефтяном техническом университете по адресу: 450062, Республика Башкортостан, г. Уфа, ул. Космонавтов, 1.

С диссертацией можно ознакомиться в библиотеке Уфимского государственного нефтяного технического университета.

Автореферат разослан «25» августа 2009 года.

Ученый секретарь совета Лягов А.В.

Актуальность темы

В настоящее время нефтегазовый комплекс представляет собой наиболее динамично развивающуюся отрасль не только в России, но и во всем мире. Разрабатываются новые месторождения нефти и газа, строятся новые и реконструируются существующие трубопроводные системы, перерабатывающие заводы, внедряется новое оборудование. При этом все более жесткими становятся требования к пожарной и промышленной безопасности всех технологических процессов (ТП). В существующих условиях велико значение так называемого «человеческого фактора» и соответственно качества профессиональной подготовки оперативного и диспетчерского персонала. Именно операторы и диспетчеры в случае возникновения аварийной ситуации должны в максимально короткое время уметь найти правильное решение. От профессионализма операторов и диспетчеров зависит не только пожарная и промышленная безопасность, сохранность дорогостоящего технологического оборудования, но и жизни людей.

В процессе обучения оперативного и диспетчерского персонала применяются различные компьютерные обучающие системы. Для получения навыков безопасного управления технологическим процессом, эффективными средствами обучения являются компьютерные задачники, лабораторные практикумы и, в большей степени, компьютерные тренажеры. Именно тренажеры дают операторам и диспетчерам «процедуральные знания», т.е. знания о том, как организована практическая деятельность, в отличие от «декларированного знания» об объекте, содержащегося в компьютерных справочниках, учебниках, системах контроля знаний и т.д.

Работам в области повышения уровня промышленной безопасности нефтегазовых объектов с использованием информационно-аналитических и компьютерных систем посвящены научные труды авторов: С.М. Вайнштока, В.В. Грачева, Л.И. Григорьева, М.А. Гусейнзаде, В.М. Дозорцева, О.М. Иванцова, С.Е.Кутукова, М.В. Лурье, И.И. Мазура, Р.Т. Файзуллина и др. Эффективность использования тренажеров для профессиональной подготовки персонала рассматривались в работах В.В. Вершинина, Ю.З. Гильбуха, Ф.Д.Лыскова, Б.Л. Омельяненко и др.

Усложнение технологий производства и систем управления технологическими процессами (далее ТП), статистика аварийности, огромный промышленный и экологический риск при управлении объектами нефтегазового комплекса, значительный вес ошибок операторского управления ТП в общем числе причин аварий определяют актуальность разработки и внедрения компьютерных тренажеров для обучения операторов и диспетчеров ТП.

Современные информационные технологии создают качественно новую ситуацию в компьютерной поддержке системы промышленной безопасности. Новым перспективным направлением развития информационных технологий обеспечения промышленной безопасности является соединение в одном программно-техническом комплексе возможностей тренажеров для операторов технологических процессов и программ анализа потенциальных опасностей. Такое соединение позволит поднять всю систему промышленной безопасности на качественно новый научно-технический уровень и даст возможность при создании паспорта риска предприятия решать вопрос о базисном типе возможной аварии (место возникновения, причины, ожидаемые последствия, возможность ликвидации своими силами), используя весьма точные модели технологических процессов и систем управления.

В связи с этим тематика исследований, затрагивающих вопросы разработки тренажеров для наиболее эффективного обучения оперативного персонала и повышения уровня промышленной безопасности предприятий нефтегазового сектора, является актуальной.

Цель работы

Целью работы является разработка общих принципов построения программно-технических тренажерных комплексов, а также методического и программного обеспечения для обучения оперативного и диспетчерского персонала объектов транспорта нефти и нефтепродуктов.

Задачи исследования

В диссертационной работе решаются следующие задачи:

  1. Анализ существующих тренажерных систем, тенденций их развития и общих составляющих программно-технических тренажерных комплексов.
  2. Разработка концептуальной модели процесса обучения оперативного и диспетчерского персонала объектов транспорта нефти и нефтепродуктов на основе программно-технических тренажерных комплексов.
  3. Разработка метода обучения оперативного и диспетчерского персонала объектов транспорта нефти и нефтепродуктов на основе программно-технических тренажерных комплексов.
  4. Разработка программно-технического тренажерного комплекса для обучения деятельности по обеспечению промышленной безопасности при управлении объектами транспорта нефти и нефтепродуктов в штатных и нештатных ситуациях.
  5. Экспериментальное подтверждение эффективности предложенных методов.

Методы решения поставленных задач





В основе проводимых в диссертационной работе исследований используются методы системного анализа, математического моделирования, ситуационного и автоматизированного компьютерного обучения, теория баз данных и методы объектно-ориентированного программирования.

Научная новизна

Научная новизна и теоретическая значимость результатов исследования состоит в следующем:

  1. Выполнена полукачественная идентификация технологических процессов возникающих при транспортировании нефти и нефтепродуктов по трубопроводам путем построения имитационных феноменологических математических моделей и их аналитического исследования. Построение указанных моделей основано на декомпозиции объекта на составляющие (подсистемы): технологического процесса, системы управления, системы отображения, имитатора аварийных ситуаций и базы данных настроечных параметров. На основании полученных решений установлены и определены аналитические зависимости изменения технологических параметров моделируемого участка трубопроводов, что позволило создать тренажерные комплексы максимально соответствующие реальным технологическим объектам.
  2. Выполнено численное решение научной задачи связанное с построением и исследованием устойчивости и адекватности математических моделей трубопроводов для тренажерных комплексов. Разработаны имитационные математические модели технологического процесса транспорта нефти и нефтепродуктов по трубопроводам с использованием двух различных методов расчета. Для вывода систем уравнений моделируемых участков трубопроводов в первом варианте использованы теорема количества движения, закон сохранения массы и уравнения состояния, во втором варианте использованы гидравлические аналоги 1-го и 2-го законов Кирхгофа. На основании исследования этих вариантов моделей определено, что установленным критериям устойчивости и адекватности моделирования соответствует первый вариант математической модели.
  3. Предложена и экспериментально доказана концепция снижения риска аварийности и травматизма в нефтегазовой отрасли на основе обучения операторов и диспетчеров деятельности по обеспечению промышленной безопасности при управлении в штатных и нештатных ситуациях. Сущность концепции состоит в том, что при обучении оперативного и диспетчерского персонала с применением разработанного тренажерного комплекса обучаемым прививаются умения по распознаванию ситуаций и моторные навыки управления технологическими процессами, что приводит к повышению надежности операторской деятельности, снижению риска аварийности и травматизма. Применение методов обучения, основанных на данной концепции, позволяет сократить время выполнения действий обучаемых в аварийных ситуациях в среднем в 2 раза, вероятность выполнения ошибочных действий сокращается в 3–8 раз.

Практическая ценность

Практическая ценность исследования состоит в том, что существенно сокращаются сроки подготовки операторов; позволяют им выработать приёмы упреждения ситуаций, уменьшение времени ликвидации и парирования ситуаций; удобство обучения и непрерывность подготовки.

Разработанный тренажерный комплекс и метод обучения оперативного и диспетчерского персонала объектов транспорта нефти и нефтепродуктов внедрены и успешно используются в системе внутрифирменного профессионального образования ОАО «АК «Транснефть». Разработанный тренажерный комплекс так же используется при проведении ежегодных конкурсов «Лучший по профессии» среди операторов НПС в ОАО «АК «Транснефть» в период с 2004 г. по настоящее время. Практическое использование разработанных тренажерных комплексов и методик обучения подтверждено актами внедрения.

Основные защищаемые положения





На защиту выносится:

  1. Метод проектирования и разработки тренажерных комплексов для обучения оперативного и диспетчерского персонала.
  2. Феноменологическая математическая модель технологического процесса транспорта нефти и нефтепродуктов по трубопроводам, реализующая моделирование основных и вспомогательных параметров работы технологического участка.
  3. Метод обучения оперативного и диспетчерского персонала с применением разработанного тренажерного комплекса действиям в штатных и нештатных ситуациях

Апробация работы

Результаты, полученные в ходе выполнения диссертационной работы, докладывались и обсуждались в рамках V Конгресса  нефтегазопромышленников России на конференции «Метрология, автоматизация, связь в нефтегазовом комплексе» (г. Уфа, Большой зал Федерации профсоюзов Республики Башкортостан, 19 мая 2004 г.), и в рамках VІ Конгресса нефтегазопромышленников России на конференции «Автоматизация и метрология в нефтегазовом комплексе» (г. Уфа, Большой зал Федерации профсоюзов Республики Башкортостан, 25 мая 2005 г.).

Публикации

По результатам выполненных исследований опубликовано 9 печатных работ, отражающих основные результаты работы, три из которых опубликованы в ведущих рецензируемых научных изданиях в соответствии с перечнем ВАК Минобразования и науки Российской Федерации, получено два свидетельства о регистрации программ для ЭВМ.

Объем и структура диссертации

Диссертация состоит из введения, 4 глав, заключения, списка литературы (123 наименования) и приложений. Основное содержание диссертационной работы изложено на 138 страницах машинописного текста, иллюстрированного таблицами и рисунками.

Общее содержание работы

Во введении раскрыта актуальность выбранной темы диссертационной работы; сформулированы цель, задачи и основные положения, выносимые на защиту, отражена научная новизна выполненных исследований и их практическая значимость.

Первая глава посвящена анализу тенденций развития и проблематики прикладных информационных технологий. В результате установлено, что одной из наиболее актуальных областей повышения промышленной безопасности является создание автоматизированных обучающих систем и тренажерных комплексов для подготовки персонала по работе в штатных и нештатных ситуациях.

Анализ данных по отказам, вызвавших аварийные остановки НПС за 2002-2004 гг., показал, что аварийность на объектах ОАО «АК «Транснефть» по вине оперативного и диспетчерского персонала составляет 9,1%, что главным образом обусловлено отсутствием готовности к работе в сложных штатных и нештатных ситуациях (рисунок 1).

В настоящее время для опасных производств в соответствии с «Общими правилами взрывобезопасности для взрывопожароопасных химических, нефтехимических и нефтеперерабатывающих производств (ПБ 09-540-03)» использование тренажеров для обучения является обязательным. Однако экономическая ситуация часто не позволяет руководителям многих предприятий использовать в процессе подготовки персонала тренажерные комплексы.

Рисунок 1 – Распределение отказов по видам в ОАО «АК «Транснефть» за 2002-2004гг.

Проведен сравнительный анализ некоторых существующих тренажерных комплексов для обучения оперативного и диспетчерского персонала объектов транспорта нефти. Установлено, что декомпозиция процесса управления на типовые этапы: распознавание ситуации, принятие решения, выбор управляющего воздействия, контроль эффективности собственных действий в нештатных ситуациях позволяет решать задачу подготовки операторов с использованием специальных тренажеров.

На основании проведенного исследования, а также анализа задач, решаемых существующими тренажерами, были сформулированы требования к тренажерной системе по подготовке диспетчерского и оперативного персонала по обеспечению промышленной безопасности при управлении объектами транспорта нефти и нефтепродуктов в штатных и нештатных ситуациях. Такая система должна обеспечивать:

  1. Моделирование работы основных технологических узлов НПС (резервуарные парки, насосные агрегаты, узлы учет нефти и т.д.).
  2. Моделирование работы линейной части магистрального нефтепровода.
  3. Моделирование работы вспомогательных систем НПС (маслосистема, энергоснабжение, система контроля вибрации и т.д.).
  4. Возможность одновременной работы группы учеников (совместная работа операторов НПС и диспетчеров РДП).
  5. Наличие системы контроля действий учеников.
  6. Возможность пополнения базы данных сценариев учебных примеров пользователем.
  7. Возможность изменения экранных форм пользователем.
  8. Возможность изменения моделируемой технологической схемы участка нефтепроводов пользователем.

Вторая глава посвящена разработке концептуальной модели обучения оперативного и диспетчерского персонала объектов транспорта нефти в учебных центрах ОАО «АК «Транснефть» с использованием тренажеров. В рамках данного подхода подготовка к деятельности предусматривает работу как в штатных ситуациях, так и в аварийных ситуациях агрегатного и станционного характера.

Предлагаемая схема практической подготовки оперативного и диспетчерского персонала представлена на рисунке 2. Обучающая система, основными элементами которой являются модель ТП и модель системы управления (далее СУ), установлена на автоматизированное рабочее место (далее АРМ) преподавателя и АРМ учеников.

Рисунок 2 – Схема тренажерной подготовки

Преподаватель наделяется следующими функциями:

  1. контроль за действиями учеников;
  2. сохранение начальных состояний моделируемого технологического процесса;
  3. загрузка ранее сохраненных начальных состояний моделируемого технологического процесса;
  4. изменение параметров моделируемого технологического процесса;
  5. имитация отказов в работе основного оборудования, вспомогательных систем, КИПиА;
  6. имитация возникновения утечек на нефтепроводах;
  7. возможность имитации последовательности возникновения различных отказов в работе оборудования (сценарии развития нештатных ситуаций);
  8. формирование и печать протоколов действий каждого ученика при завершении учебного занятия.

Ученик со своего рабочего места оценивает текущую ситуацию на технологическом объекте и производит управляющие воздействия, направленные на поддержку заданного технологического режима работы оборудования, на локализацию последствий возникших аварийных ситуаций или иные действия в зависимости от текущей ситуации на объекте.

Предложен метод обучения на базе разработанного тренажерного комплекса. Он включает комплексы учебных заданий, направленных на подготовку к работе по приемке смены, работе в штатном режиме и действиям в нештатных аварийных ситуациях. Данный метод позволяет существенно сократить время выполнения учебных заданий, то есть повысить скорость реакции на аварийные ситуации, а также повысить долю правильно выполняемых действий.

Третья глава посвящена реализация тренажерной системы подготовки оперативного и диспетчерского персонала объектов транспорта нефти в учебных центрах ОАО «АК «Транснефть».

В соответствии с разработанным методом построения тренажеров был разработан тренажерный комплекс для обучения оперативного и диспетчерского персонала объектов транспорта нефти и нефтепродуктов, включающий разработанную математическую модель технологического процесса транспорта нефти и нефтепродуктов по трубопроводам, разработанную модель системы управления, разработанный генератор аварийных ситуаций. Обобщенная схема тренажерного комплекса представлена на рисунке 3.

При работе тренажерного комплекса с АРМ преподавателя осуществляется загрузка сохраненных ранее исходных состояний моделируемого ТП.

Исходные данные загружаются в математическую модель основных ТП, модель СУ и модель вспомогательных ТП. Все параметры (основные и вспомогательные) моделируемого технологического процесса отслеживаются моделью СУ, которая в случае достижения какого-либо параметра предельного или аварийного значения производит управляющие воздействия (изменяет состояния задвижек, заслонок, агрегатов и т.д.) в соответствии с алгоритмами управления на реальном объекте.

Рисунок 3 – Обобщенная схема тренажерного комплекса

Данные о технологическом процессе передаются в базу данных (хранение исторических трендов, настроечные параметры и т.д.) и через систему отображения (SCADA-пакет) на АРМ учеников и АРМ преподавателя.

С АРМ учеников возможно управление технологическим оборудованием так, как это производится на реальных технологических объектах. В зависимости от поставленной преподавателем задачи ученики следят за технологическим процессом или осуществляют технологические переключения.

Преподаватель через генератор аварийных ситуаций может воздействовать на модель основных ТП, модель вспомогательных ТП и модель СУ. К таким воздействиям относятся:

  • имитация утечки на линейном участке трубопровода;
  • недостоверность показаний контролируемых параметров, изменения показаний (достижение предельных или аварийных значений);
  • отказ в управлении технологическим объектом (имитация обрыва управляющей цепи).

В связи с тем, что моделируемый ТП является сложным, с большим количеством взаимосвязанных параметров и подсистем при разработке математической модели ТП параметры условно разделили на две группы: основные и вспомогательные технологические параметры.

Значения основных технологических параметров, передаваемые в модель СУ, представляются в следующем виде:

П = Пр + Ппр,

где Пр = f(t) – значение контролируемого параметра в контрольной точке от времени (рассчитывается математической моделью);

Ппр – отклонение параметра, задаваемое с АРМ преподавателя (имитация неисправности датчика или аварийной ситуации).

Разработано программное обеспечение, позволяющее производить расчет основных технологических параметров моделируемой технологической схемы с использованием двух методов расчета:

  1. Составление и расчет дифференциальных уравнений движения жидкости по трубопроводу на основе теоремы количества движения, закона сохранения массы и уравнения состояния (математическая модель№1):

где – давление;

– осредненная по сечению скорость течения жидкости;

с – скорость звука в данной жидкости;

– коэффициент гидравлического сопротивления;

D – диаметр трубопровода.

Моделируемая технологическая схема нефтепроводов условно разбивается на участки по следующему принципу: начало первого участка – резервуар, конец первого участка – ближайший узел или технологический элемент (задвижка, насос, клапан и.т.д.); начало второго участка – конец первого, конец второго – следующий ближайший узел или технологический элемент и т.д.; конец последнего участка – резервуар. Таким образом, все участки являются взаимосвязанными по краевым условиям, расчет параметров ведется для каждого участка и соответственно для всей схемы со скважностью, определяемой возможностями ЭВМ.

  1. Составление и расчет уравнений, на основании 1-го и 2-го законов Кирхгофа вида (математическая модель №2):

a11 x1 + : : : + a1n xn = Q1;

: : :

ak1 x1 + : : : + akn xn = Qk;

a(k+1)1 x1 1-1 x1 + : : : + a(k+1)n xn n -1 xn = H1;

: : :

an1 x1 1-1 x1 + : : : + ann xn n -1 xn = Hn-k,

где xi - расход в i-той трубе;

аij – коэффициент, определяемый по 1-му или 2-му закону Кирхгофа (для 1-го закона Кирхгофа втекающий в контрольную точку поток привносит коэффициент, равный единице, вытекающему потоку отвечает коэффициент, равный минус единице; для 2-го закона Кирхгофа и для нелинейных уравнений аij – коэффициент сопротивления трубы);

Нi - приложенные напоры;

Qi – отбор в узле;

i – степень в законе зависимости величины напора от значения расхода.

Суть метода расчета следующая: система трубопроводов описывается уравнениями, составленными исходя из 1-го и 2-го законов Кирхгофа, и решается со скважностью, определяемой возможностями ЭВМ.

Для выбора оптимального метода расчета основных технологических параметров проведены экспериментальные исследования на соответствие моделей следующим критериям:

  1. адекватность расчетных параметров реальному объекту в стационарных состояниях;
  2. адекватность расчетных параметров реальному объекту в нестационарных состояниях;
  3. устойчивость моделирования ТП.

Результаты проведенных исследований представлены в таблице 1.

Таблица 1 – Результаты исследования математических моделей ТП

п/п Наименование исследования,
контролируемый параметр
Значение параметра
для математической модели №1
Значение параметра
для математической модели №2
Допустимое Фактическое Допустимое Фактическое
1 Адекватность в стационарных состояниях, отклонение (%) 5,00 1,60 5,00 2,48
2 Адекватность в нестационарных состояниях, максимальное отклонение (%) 10,00 4,39 10,00 16,81
3 Устойчивость моделирования ТП, отклонение (%) 1,00 0,40 1,00 0,50

Результаты исследования показали, что математическая модель ТП, составленная исходя из 1-го и 2-го законов Кирхгофа, не соответствует установленному критерию адекватности моделирования нестационарных состояний. Допустимое значение максимального отклонения составляет 10,00%, фактическое значение – 16,81%.

Моделирование значений вспомогательных технологических параметров в контрольных точках производится согласно следующему уравнению (рисунок 4):

Т = Т0 + Тп + Тр + Тпр,

где Т0 – начальное значение параметра, загружаемое по умолчанию при пуске программного обеспечения;

Тп – значение помехи, единичного отклонения от заданного значения;

Тр = f(t) – значение изменения параметра в контрольной точке от времени (нагрев обмоток работающего электродвигателя, изменение уровня во вспомогательных емкостях при работающих насосах и т.д.);

Тпр – отклонение параметра, задаваемое с АРМ преподавателя (имитация неисправности датчика или аварийной ситуации).

Рисунок 4 – Диаграмма моделирования вспомогательных параметров

Для различных видов моделируемых вспомогательных технологических параметров начальные, рабочие, предельные и аварийные значения определяются в соответствии со значениями, установленными в регламентах, из реальных данных технологического процесса и значений уставок срабатывания СУ.

Время выхода на рабочий режим и вид функции Тр = f(t) для каждого моделируемого технологического параметра так же определятся исходя из реальных данных технологического процесса.

Описание принятых алгоритмов изменения различных моделируемых вспомогательных параметров представлено в таблице 2.

Спроектированы основные элементы и библиотека готовых типовых элементов системы отображения диспетчерской информации для мнемонических схем, соответствующих наблюдаемым и управляемым компонентам насосных станций и линейного участка нефтепроводов с АРМ оператора и АРМ диспетчера. Разработан программный модуль «дизайнер» системы отображения экранных форм операторов НПС и диспетчеров РДП с учетом действующих требований регламентов ОАО «АК «Транснефть».

Таблица 2 - Функции Тр = f(t) для различных параметров

п/п Наименование вспомогательного параметра Описание функции
1 Температура в контрольных точках Условие начала изменения – пуск агрегата; Начальное значение (t0) = 20 °C; Рабочее значение (tр) = 50 °C; Значение помехи = ±5 °C; Тр = k – линейная функция; – время, с. k = 0,5.
2 Вибрация в контрольных точках Условие начала изменения – пуск агрегата; Начальное значение (а0) = 0 мм/с; Рабочее значение (ар) = 3 мм/с; Значение помехи = ±0,5 мм/с; 1 – время достижения максимального значения вибрации агрегата при пуске, с. 2 – время достижения рабочего значения вибрации агрегата при пуске, с. – максимальное (пусковое) значение вибрации агрегата, мм/с; k1 = 5; k2 = 3.

Окончание таблицы 2

п/п Наименование вспомогательного параметра Описание функции
3 Сила тока электродвигателей Условие начала изменения – пуск агрегата; Начальное значение (i0) = 0 мм/с; Рабочее значение (iр) = 700 А; Значение помехи = ±10 А; 1 – время достижения максимального значения тока агрегата при пуске, с. 2 – время достижения рабочего значения тока агрегата при пуске, с. – максимальное (пусковое) значение тока агрегата, А; k1 = 5; k2 = 3.
4 Уровни продукта во вспомогательных емкостях Условие начала изменения – пуск насоса (откачки утечек, пожарного насоса и т.д.); Начальное значение – сохраненное в исходных данных значение; Значение помехи = ±1 мм; Тр = kt – линейная функция; k = 0,05.
5 Загазованность в контрольных точках Условие начала изменения – пуск насоса; Начальное значение (t0) = 0 %; Рабочее значение (tр) = 0 %; Значение помехи = +2 %.
6 Перепад давлений на фильтрах Условие начала счета – пуск тренажера; Начальное значение – сохраненное в исходных данных значение; Значение помехи = ±0,01 кгс/см2.
7 Состояния вспомогательных систем Условие начала счета – пуск тренажера; Начальное состояние – сохраненное в исходных данных состояние.
8 Содержание примесей в продукте Условие начала счета – пуск тренажера; Начальное значение – сохраненное в исходных данных значение; Значение помехи = ±0,05%.

Разработан имитатор аварийных ситуаций, позволяющий реализовать режим обучения, максимально соответствующий реальному рабочему месту, и метод его применения, отличающийся возможностью задания набора аварийных событий в виде определенной согласованной последовательности.

Четвертая глава посвящена исследованию эффективности применения тренажерных обучающих комплексов оперативного и диспетчерского персонала в интересах повышения промышленной безопасности при управлении объектами транспорта нефти и нефтепродуктов.

Для проведения эксперимента были взяты 2 группы по 25 (первая группа) и 21 (вторая группа) человек соответственно. Каждая группа находилась в отдельном компьютерном классе и не обладала информацией о действиях другой группы. При этом первая группа выполняла задания с предварительным обучением при помощи тренажерной обучающей программы, а вторая на основе методических материалов на бумажном носителе.

Проведенный анализ показал, что наиболее адекватными характеристиками оценки эффективности результатов обучения с использованием разработанной тренажерной системы являются показатели времени выполнения определенных действий, доля правильных действий, среднее квадратическое отклонение (СКО) времени выполнения действий и доли правильных действий, а также такие сравнительные показатели, как коэффициент усвоения и коэффициент сокращения времени выполнения.

Проведенные исследования эффективности разработанной тренажерной системы показали, что при решении типовых задач приемки смены среднее время приемки сокращается с 18 до 15 минут, что при уровне значимости =0,01 является статистически значимым различием. Доля правильных действий увеличивается с 76 до 97%. Соответственно в восемь раза уменьшается количество ошибок. При решении проблем аварийной ситуации на одной из подсистем среднее время правильной реакции сокращается почти в два раза, стандартное отклонение (разброс) времени – в 2,5 раза. Доля правильных действий увеличивается с 64 до 89%, то есть более чем в три раза сокращается доля ошибочных действий. При решении проблем аварийной ситуации станционного характера среднее время реакции сокращается с 19,1 до 10,5 минут, стандартное отклонение (разброс) времени – в 2,7 раза. Доля правильных действий увеличивается с 57 до 84%, то есть в два с лишним раза уменьшается доля ошибочных действий.

Рисунок 5 – Сравнительные показатели при выполнении приемки смены

Рисунок 6 – Сравнительные показатели при выполнении заданий с аварийными ситуациями агрегатного типа

Рисунок 7 – Сравнительные показатели при выполнении заданий с аварийными ситуациями станционного типа

Выводы и результаты

  1. Анализ данных по обучению персонала сложных технических систем с использованием современных тренажерных комплексов показал, что аварийность на объектах ОАО «АК «Транснефть» по вине оперативного и диспетчерского персонала составляет 9,1%, что, главным образом, обусловлено отсутствием готовности к работе в сложных штатных и нештатных ситуациях. Это положение требует применение для подготовки оперативного и диспетчерского персонала имитационных тренажеров нового поколения. Установлено, что в структуре тренажеров необходимым является наличие подсистемы генерации и анализа аварийных ситуаций, которая в большинстве известных систем либо не реализована, либо реализована не в полном объеме.
  2. Предложен новый метод построения тренажерного комплекса для подготовки диспетчеров и операторов трубопроводного транспорта на базе единого подхода, новых моделей и метода типизации. Он заключается в построении математической модели типового участка нефтепровода, модели типовой СУ, проектировании типовой системы отображения диспетчерской информации, базы данных и типового имитатора аварийных ситуаций. Типовой имитатор СУ спроектирован на основе РД, регламентирующих тип, место и время возникновения ситуации.
  3. Разработано новое программное обеспечение тренажерного комплекса для обучения деятельности по обеспечению промышленной безопасности при управлении объектами транспорта нефти и нефтепродуктов в штатных и нештатных ситуациях на основе концептуальных моделей деятельности человека–оператора. В составе тренажерного комплекса впервые разработан имитатор аварийных ситуаций, позволяющий реализовать режим обучения, максимально соответствующий реальному рабочему месту, и метод его применения, отличающийся возможностью задания набора аварийных событий в виде определенной согласованной последовательности.
  4. Предложена и экспериментально доказана концепция снижения риска аварийности и травматизма в нефтегазовой отрасли на основе обучения деятельности по распознаванию ситуаций и отработке моторных навыков управления технологическими процессами. Применение методов обучения, основанных на данной концепции, позволяет сократить время выполнения действий обучаемых в аварийных ситуациях в среднем в 2 раза, вероятность выполнения ошибочных действий сокращается в 3–8 раз.
  5. Экспериментальное исследование разработанных методов, моделей и алгоритмов показало с достоверностью =0,95, что в штатных режимах в три раза уменьшается количество ошибок. С тем же уровнем достоверности установлено, что при решении проблем аварийной ситуации на одной из подсистем среднее время правильной реакции сокращается в два раза, а доля правильных действий увеличивается с 64 до 89%, то есть более чем в три раза сокращается доля ошибочных действий. На том же уровне достоверности установлено, что при решении проблем аварийной ситуации станционного характера среднее время реакции сокращается в два раза (с 19,1 до 10,5 минут), а доля правильных действий увеличивается с 57 до 84%, то есть в два с лишним раза уменьшается доля ошибочных действий.

Список публикаций по теме диссертации:

  1. Гиниятов И.Г. Проблема самовозбуждения емкостных электрических машин // Материалы II Международной конференции «Интеллектуальные системы управления и обработки информации». - Уфа: Изд-во УГАТУ, 2001. С.236.
  2. Гиниятов И.Г., Аиткулов Ф.Ф., Нугуманов В.Г., Шевченко Д.И. Тренажерный комплекс для обучения операторов НПС, диспетчеров РДП и ремонтного персонала // НТЖ «Автоматизация, телемеханизация и связь в нефтяной промышленности». – М.: ОАО «ВНИИОЭНГ», 2004. - №4. С. 13-16.
  3. Гиниятов И.Г., Шевченко Д.И., Ахряпов В.С., Кудрявцев А.А. Имитационные тренажеры и автоматизированные системы обучения // НТЖ «Автоматизация, телемеханизация и связь в нефтяной промышленности». – М.: ОАО «ВНИИОЭНГ», 2005. - №3. С. 26-30.
  4. Гиниятов И.Г., А.Д.Галиев, Шевченко Д.И. Эффективное обучение персонала // Ежемесячный научно-практический журнал «Ростехнадзор. Наш регион». – Уфа: ООО «Информ-сервис», 2006. - №9. –С.62-63.
  5. Гиниятов И.Г., А.Д.Галиев, Д.И.Шевченко Эффективное обучение персонала // Ежемесячный научно-практический журнал. «Ростехнадзор. Наш регион» – Уфа: Изд-во ООО «Информ-сервис», 2006г. - №10. –С.58-62.
  6. Гиниятов И.Г., Хафизов Ф.Ш., Шевченко Д.И., Кудрявцев А.А. Использование обучающих систем и тренажерных комплексов в процессе обучения// Сб. научных трудов «Обеспечение промышленной безопасности на предприятиях нефтегазовой отрасли» - Уфа: Изд-во УГНТУ, 2007. С. 80-83.
  7. Гиниятов И.Г., Сафончик Е.И., Хафизов Ф.Ш., Кудрявцев А.А. Имитационный тренажер для обучения технического персонала ОАО «АК «Транснефть» // Журнал «itech – интеллектуальные технологии». -2008. -№9. С. 70-71.
  8. Гиниятов И.Г., Хафизов Ф.Ш., Кудрявцев А.А. Подготовка и тренинг персонала объектов нефтегазового комплекса с использованием имитационных тренажеров // НТЖ «Проблемы сбора, подготовки и транспорта нефти и нефтепродуктов». - Уфа: Изд-во ГУП «ИПТЭР». -2008г. -№4 (74). -С. 115-118.
  9. Giniyatov I.G., Schevchenko D.I., Nugumanov V.G., Kudryavtsev A.A. Computer-aided training systems and simulators// Antaliya, Turkey, CSIT. - September 15-17. -2008. -V.3. -Р.123-127.
  10. Свидетельство об официальной регистрации программы для ЭВМ №2005611823. TransNNP. Программа имитации объектов трубопроводного транспорта нефти и нефтепродуктов / Шевченко Д.И., Гиниятов И.Г, Кудрявцев А.А. – Заявка №2005611724 от 11.07.2005 г.; зарегистрировано в Реестре программ для ЭВМ 25.07.2005 г.
  11. Свидетельство об официальной регистрации программы для ЭВМ №2007612079. TransNNP_RP. Программа моделирования и имитации объектов трубопроводного транспорта нефти и нефтепродуктов / Шевченко Д.И., Гиниятов И.Г, Кудрявцев А.А. – Заявка №2007611555 от 2

     


Похожие работы:

«РЫБНИКОВА АННА ВИКТОРОВНА ПСИХОЛОГИЧЕСКОЕ ПРОГНОЗИРОВАНИЕ ПРОФЕССИОНАЛЬНОЙ ПРИГОДНОСТИ СПЕЦИАЛИСТОВ ОПАСНЫХ ПРОИЗВОДСТВ НЕФТЕГАЗОВОЙ ОТРАСЛИ К ДЕЯТЕЛЬНОСТИ В ЭКСТРЕМАЛЬНЫХ УСЛОВИЯХ 05.26.03 – пожарная и промышленная безопасность Автореферат диссертации на соискание ученой степени кандидата психологических наук Санкт-Петербург 2013 Работа выполнена в ФГБОУ ВПО Санкт-Петербургский университет ГПС МЧС России Научный руководитель: доктор психологических наук, доцент Иванова...»

«ЧАБАЕВ ЛЕЧА УСМАНОВИЧ ТЕХНОЛОГИЧЕСКИЕ И МЕТОДОЛОГИЧЕСКИЕ ОСНОВЫ ПРЕДУПРЕЖДЕНИЯ И ЛИКВИДАЦИИ ГАЗОВЫХ ФОНТАНОВ ПРИ ЭКСПЛУАТАЦИИ И РЕМОНТЕ СКВАЖИН Специальность 05.26.03 – Пожарная и промышленная безопасность (нефтегазовый комплекс) АВТОРЕФЕРАТ диссертации на соискание ученой степени доктора технических наук Уфа 2009 Работа выполнена в Государственном образовательном учреждении высшего профессионального образования Тюменский государственный нефтегазовый...»

«Ширшов Александр Борисович СРЕДСТВА ЗАЩИТЫ ОТ ВРЕДНОГО И ОПАСНОГО ВОЗДЕЙСТВИЯ ЭЛЕКТРОМАГНИТНЫХ ПОЛЕЙ ТЯГОВОЙ СЕТИ специальность 05.26.01 – Охрана труда (электроэнергетика) Автореферат диссертации на соискание ученой степени кандидата технических наук Челябинск – 2006 Работа выполнена на кафедре Безопасность жизнедеятельности ГОУ ВПО Уральского государственного университета путей сообщения. Научный руководитель – доктор технических наук, профессор Кузнецов К.Б. Официальные...»

«булатова С ветлана И льгизовна обоснование комплекса санитарно-противоэпидемических мероприятий по предупреждению и снижению медико-санитарных последствий биолого-социальных чрезвычайных ситуаций ( на примере Республики Марий Эл) 05.26.02 – безопасность в чрезвычайных ситуациях (медицина катастроф) 14.00.30 – эпидемиология...»

«Бондарук Анатолий Моисеевич ОБЕСПЕЧЕНИЕ ПРОМЫШЛЕННОЙ БЕЗОПАСНОСТИ НА ЭТАПАХ СТРОИТЕЛЬСТВА И ОСВОЕНИЯ ОБЪЕКТОВ НЕФТЕГАЗОВОГО КОМПЛЕКСА Специальность 05.26.03 – Пожарная и промышленная безопасность (нефтегазовый комплекс) Автореферат диссертации на соискание ученой степени кандидата технических наук Уфа 2011 Работа выполнена в Башкирском государственном университете (БашГУ) Научный руководитель доктор технических наук Ямалетдинова Клара Шаиховна

«Аграфенин Сергей Иванович Совершенствование методов проектирования не ф тегазопроводов на основе нормативного вероятностного подхода Специальности 25.00.19 Строительство и эксплуатация нефтегазопроводов, баз и хранилищ; 05.26.03 – Пожарная и промышленная безопасность (нефтегазовый комплекс) А в т о р е ф е р а т диссертации на соискание ученой степени кандидата технических наук Уфа 2009 Работа выполнена в Государственном унитарном предприятии Институт проблем...»

«Джумаев Сергей Джалилович Совершенствование системы безопасности персонала АЭС на основе информационно-измерительной системы Скала-микро Специальность 05.26.01 Охрана труда (энергетика и электротехника) АВТОРЕФЕРАТ Диссертации на соискание ученой степени кандидата технических наук Москва 2009 Работа выполнена на кафедре инженерной экологии и охраны труда Московского энергетического института (технический университет) Научный руководитель Заслуженный деятель науки РФ, доктор...»

«Дроговоз Виктор Анатольевич СОВЕРШЕНСТВОВАНИЕ ПРОЦЕССА ОБСЛУЖИВАНИЯ ПОСТРАДАВШИХ В ЧРЕЗВЫЧАЙНЫХ СИТУАЦИЯХ С ПОМОЩЬЮ МОБИЛЬНЫХ ТЕЛЕМЕДИЦИНСКИХ КОМПЛЕКСОВ Специальность 05.26.02 – Безопасность в чрезвычайных ситуациях (авиационная и ракетно-космическая техника) Автореферат диссертации на соискание ученой степени кандидата технических наук Москва 2009 Работа выполнена в Учреждении Российской академии наук Государственном научном центре Российской Федерации- Институте...»

«Байтурина Сария Рустэмовна совершенствование методов обеспечения безопасности производственных объектов нефтедобывающих предприятий Специальность 05.26.03 – Пожарная и промышленная безопасность (нефтегазовый комплекс) автореферат диссертации на соискание ученой степени кандидата технических наук...»

«Бояров Антон Николаевич МЕХАНИЗМ ФОРМИРОВАНИЯ И ЗАЩИТА ОТ САМОВОЗГОРАНИЯ ПИРОФОРНЫХ ОТЛОЖЕНИЙ В ВЕРТИКАЛЬНЫХ РЕЗЕРВУАРАХ (на примере ОАО Самаранефтегаз) Специальность 05.26.03 – Пожарная и промышленная безопасность (нефтегазовый комплекс) Автореферат диссертации на соискание ученой степени кандидата технических наук Уфа 2010 Работа выполнена в Государственном унитарном предприятии Институт проблем транспорта энергоресурсов (ГУП ИПТЭР) Научный руководитель доктор...»

«Лопухин Борис Михайлович ОЦЕНКА И ПРОГНОЗИРОВАНИЕ ЛИЧНОСТНЫХ РЕСУРСОВ СТРЕСС-ПРЕОДОЛЕВАЮЩЕГО ПОВЕДЕНИЯ СОТРУДНИКОВ ГПС МЧС РОССИИ В ПЕРИОД АДАПТАЦИИ К ПРОФЕССИОНАЛЬНОЙ ДЕЯТЕЛЬНОСТИ 05.26.03 – пожарная и промышленная безопасность Автореферат диссертации на соискание ученой степени кандидата психологических наук Санкт-Петербург – 2013 Работа выполнена в Автономной некоммерческой образовательной организации высшего профессионального образования Институт экономики бизнеса Научный...»

«ПОЛУНИН ИГОРЬ АЛЕКСАНДРОВИЧ УЛУЧШЕНИЕ УСЛОВИЙ И БЕЗОПАСНОСТИ ТРУДА ОПЕРАТОРОВ МОБИЛЬНЫХ КОЛЕСНЫХ МАШИН В СЕЛЬСКОХОЗЯЙСТВЕННОМ ПРОИЗВОДСТВЕ ЗА СЧЕТ АВТОМАТИЧЕСКИХ УСТРОЙСТВ 05.26.01 – ОХРАНА ТРУДА (отрасль АПК) АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата технических наук Санкт-Петербург - Пушкин –2009 Работа выполнена на кафедре Безопасность жизнедеятельности ФГОУ ВПО Челябинский государственный агроинженерный университет Научный руководитель: доктор...»

«Сытдыков Максим Равильевич МЕТОДИКА ОЦЕНКИ ЭФФЕКТИВНОСТИ ПОРОШКОВОГО ОГНЕТУШИТЕЛЯ СО ВСТРОЕННОЙ ПОРИСТОЙ ЕМКОСТЬЮ (применительно к пожароопасным производственным объектам нефтебаз) 05.26.03 пожарная и промышленная безопасность (нефтегазовая отрасль) Автореферат диссертации на соискание ученой степени кандидата технических наук Санкт- Петербург – 2013 Работа выполнена в ФГБОУ ВПО Санкт-Петербургский университет ГПС МЧС России Научный руководитель – доктор технических наук,...»

«Бараковских Сергей Александрович СОВЕРШЕНСТВОВАНИЕ МЕТОДА ЗАЩИТЫ НЕФТЕГАЗОВОГО ОБОРУДОВАНИЯ ПРИ ПОЖАРАХ Специальность 05.26.03 – Пожарная и промышленная безопасность (нефтегазовый комплекс) АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата технических наук Уфа 2012 Работа выполнена в Государственном унитарном предприятии Институт проблем транспорта энергоресурсов (ГУП ИПТЭР). Научный руководитель – Иванов Вадим Андреевич, доктор технических наук,...»

«БОГДАНОВ Андрей Владимирович ПОВЫШЕНИЕ БЕЗОПАСНОСТИ И СОВЕРШЕНСТВОВАНИЕ ОЦЕНКИ УСЛОВИЙ ТРУДА ОПЕРАТОРОВ МОБИЛЬНЫХ КОЛЕСНЫХ МАШИН В АГРОПРОМЫШЛЕННОМ ПРОИЗВОДСТВЕ Специальность 05.26.01 – Охрана труда (в агропромышленном комплексе) АВТОРЕФЕРАТ диссертации на соискание ученой степени доктора технических наук Санкт-Петербург – Пушкин – 2010 Работа выполнена на кафедре Безопасность жизнедеятельности ФГОУ ВПО Челябинская государственная агроинженерная академия Научный консультант:...»

«Копылов Сергей Александрович УЛУЧШЕНИЕ ОХРАНЫ ТРУДА ВОДИТЕЛЕЙ ТРАНСПОРТНЫХ СРЕДСТВ В АПК ЗА СЧЁТ СНИЖЕНИЯ РИСКА ТРАВМИРОВАНИЯ ПРИ ТОРМОЖЕНИИ Специальность 05.26.01 - Охрана труда (отрасль АПК) А в т о р е ф е р а т диссертации на соискание ученой степени кандидата технических наук Санкт – Петербург – Пушкин – 2011 Работа выполнена в ГОУ ВПО Орловский государственный университет Научный руководитель кандидат технических наук, доцент Загородних Анатолий Николаевич Официальные...»

«АЛЕКСАНЬЯН АРТУР АРАМОВИЧ Управление промышленной безопасностью эксплуатации морских гидротехнических сооружений шельфа юга Вьетнама (на примере месторождения Дракон СП Вьетсовпетро) Специальность 05.26.03 – Пожарная и промышленная безопасность (нефтегазовый комплекс) АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата технических наук Уфа 2011 Работа выполнена в Государственном унитарном предприятии Институт проблем транспорта...»

«Демидова Ольга Анатольевна РАЗРАБОТКА МЕТОДОВ ОЦЕНКИ ЭКОСИСТЕМНЫХ РИСКОВ В ЗОНАХ ВОЗДЕЙСТВИЯ ВЫБРОСОВ НА ОБЪЕКТАХ ГАЗОВОЙ ПРОМЫШЛЕННОСТИ 05.26.02 – Безопасность в чрезвычайных ситуациях в нефтяной и газовой промышленности АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата технических наук Москва – 2007 Работа выполнена в Обществе с ограниченной ответственностью Научно-исследовательский институт природных газов и газовых технологий – ВНИИГАЗ и в Некоммерческом...»

«ЧИРКОВ ЮРИЙ АЛЕКСАНДРОВИЧ СОВЕРШЕНСТВОВАНИЕ МЕТОДОВ ПОВЫШЕНИЯ БЕЗОПАСНОСТИ ТРУБОПРОВОДОВ СЕРОВОДОРОДСОДЕРЖАЩИХ МЕСТОРОЖДЕНИЙ Специальность 05.26.03 – Пожарная и промышленная безопасность (нефтегазовая отрасль) АВТОРЕФЕРАТ диссертации на соискание ученой степени доктора технических наук Уфа – 2010 Работа выполнена в ГОУ ВПО Оренбургский государственный университет. Научный консультант - доктор технических наук, профессор Кушнаренко Владимир Михайлович Официальные оппоненты:...»







Загрузка...



 
2014 www.avtoreferat.seluk.ru - «Бесплатная электронная библиотека - Авторефераты диссертаций»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.